Tests if an RNG can recover the true quantiles within a margin of error
Source:R/test-helper.R
test_rng_quantiles.RdTests if an RNG can recover the true quantiles within a margin of error
Usage
test_rng_quantiles(
rng_fun,
quantile_fun,
n,
mu_list,
aux_list = NA,
aux2_list = NA,
eps,
quantiles,
p_acceptable_failures,
mu_link = identity,
relative = FALSE
)Arguments
- rng_fun
RNG function under test
- quantile_fun
Quantile function related to the rng under test.
- n
Sample size for the rng test.
- mu_list
Metric data used as RNG argument and to be compared to (usually mean or median)
- aux_list
Auxiliary parameter value list.
- aux2_list
Auxiliary parameter value list for applicable distributions.
- eps
Acceptable difference of |mu - metric_mu(rng_fun)
- quantiles
Quantiles to test for recovery.
- p_acceptable_failures
Acceptable rate of failure, relative value of difference bigger mu_eps
- mu_link
Default=identity, optional link-function argument, for example useful in link-normal-distributions
- relative
True if the error should be relative to the mu_list
Examples
eps <- 0.001
mu_list <- seq(from = 1 + eps, to = 20, length.out = 10)
phi_list <- seq(from = 2 + eps, to = 20, length.out = 10)
# if working as expected, this test should not print any errors
bayesfam:::test_rng_quantiles(
rng_fun = rbetaprime,
quantile_fun = qbetaprime,
n = 10000,
mu_list = mu_list,
aux_list = phi_list,
eps = 0.1,
quantiles = c(0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99),
p_acceptable_failures = 0.1,
relative = TRUE
)