Tests if an RNG can achieve a good enough location often enough
Usage
test_rng(
rng_fun,
metric_mu,
n,
mu_list,
aux_list = NA,
aux2_list = NA,
mu_eps,
p_acceptable_failures,
mu_link = identity,
relative = FALSE,
debug = TRUE
)Arguments
- rng_fun
RNG function under test
- metric_mu
Metric to be used on RNG data (usually mean or median)
- n
Sample size for the rng test.
- mu_list
Metric data used as RNG argument and to be compared to (usually mean or median)
- aux_list
Auxiliary parameter
- aux2_list
Auxiliary parameter for second parameter (if applicable).
- mu_eps
Acceptable difference of |mu - metric_mu(rng_fun)
- p_acceptable_failures
Acceptable rate of failure, relative value of difference bigger mu_eps
- mu_link
Default=identity, optional link-function argument, for example useful in link-normal-distributions
- relative
True if the error should be relative to the mu_list, Default = FALSE
- debug
bool argument, if set will printout the difference, in case of failure. Default = FALSE
Examples
eps <- 1e-6
mu_list <- seq(from = 1 + eps, to = 20, length.out = 10)
phis <- seq(from = 2 + eps, to = 20, length.out = 10)
result <- bayesfam:::test_rng(
rng_fun = rbetaprime, metric_mu = mean, n = 10000, mu_list = mu_list,
aux_list = phis, mu_eps = 0.2, p_acceptable_failures = 0.05
)
print(result)
#> <expectation_success/expectation/condition>
#> As expected