Skip to contents

Probability density and RNG function for the mixture of shifted lognormal and uniform distributions.

Usage

rshifted_lognormal_uniform(
  n,
  meanlog = 0,
  sdlog = 1,
  mix = 0.1,
  shift = 0,
  max_uniform = 100
)

dshifted_lognormal_uniform(
  y,
  meanlog = 0,
  sdlog = 1,
  mix = 0.1,
  shift = 0,
  max_uniform = 100
)

Arguments

n

the number of values to draw from the RNG

meanlog

the mean of the lognormal component

sdlog

the sd of the lognormal component

mix

the probability of the value comming from the uniform component

shift

the shift the lognormal distribution

max_uniform

the maximum value of the uniform component

y

the observed value

Details

The mixture of shifted lognormal and uniform can be described as $$y_i = \begin{cases} u_i & \mathrm{if} \quad z_i = 0 \\ s_i + r_i & \mathrm{if} \quad z_i = 1 \end{cases} \\ u_i \sim Uniform(0, \alpha) \\ \log(r_i) \sim Normal(\mu_i, \sigma) \\ P(z_i = 0) = \theta$$

Where θ corresponds to mix, α to max_uniform and \(s_i\) to shift.