Generalized gamma distribution
Usage
dgeneralized_gamma(x, mu = 0, sigma = 1, Q, log = FALSE)
rgeneralized_gamma(n, mu = 0, sigma = 1, Q)
generalized_gamma(link = "log", link_sigma = "log", link_Q = "log")Source
Bases on flexsurv (https://github.com/chjackson/flexsurv/tree/master) by Christopher Jackson chris.jackson@mrc-bsu.cam.ac.uk. Inspired by a blog post by Demetri Pananos (https://dpananos.github.io/posts/2023-12-02-gen-gamma/) and code by Krzysztof Sakrejda (https://github.com/sakrejda/tooling).
Arguments
- x
Value, x > 0.
- mu
Vector of “location” parameters.
- sigma
Vector of
scale'' parameters. Note the inconsistent meanings of the termscale” - this parameter is analogous to the (log-scale) standard deviation of the log-normal distribution,sdlog'' in [dlnorm()], rather than thescale” parameter of the gamma distributiondgamma(). Constrained to be positive.- Q
Vector of shape parameters.
- log
logical; if TRUE the log-pdf is returned
- n
number of observations.
- link
Link function for mu
- link_sigma
Link function for sigma
- link_Q
Link function for Q
References
Prentice, R. L. (1974). A log gamma model and its maximum likelihood estimation. Biometrika 61(3):539-544.
Farewell, V. T. and Prentice, R. L. (1977). A study of distributional shape in life testing. Technometrics 19(1):69-75.
Lawless, J. F. (1980). Inference in the generalized gamma and log gamma distributions. Technometrics 22(3):409-419.
Cox, C., Chu, H., Schneider, M. F. and Muñoz, A. (2007). Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in Medicine 26:4252-4374
Stacy, E. W. (1962). A generalization of the gamma distribution. Annals of Mathematical Statistics 33:1187-92