Skip to contents

Probability density function for the logistic distribution

Usage

dlogistic(x, mu, sigma, log = FALSE)

Arguments

x

Value, unbound

mu

Mean, unbound

sigma

Scale, sigma > 0

log

Optional argument. If true, returns the log density.

Value

Density of the pdf given x, mu and sigma

Details

The logistic distribution has density $$f(y | \mu, \sigma) = \frac{e^{-z}}{\sigma(1 + e^{-z})^2}$$

Where z is the linear transformation $$z(y, \mu, \sigma) = \frac{y - \mu}{\sigma}$$

Examples

x <- seq(from = -5, to = 10, length.out = 1000)
plot(x, dlogistic(x, mu = 2, sigma = 1), type = "l")